toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P. doi  openurl
  Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 229 Issue 3 Pages 1453-1466  
  Keywords bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy  
  Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation  
  Address (up) UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 997  
Permanent link to this record
 

 
Author Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. doi  openurl
  Title Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 228 Issue 2 Pages 512-524  
  Keywords drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem  
  Abstract Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust  
  Address (up) Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 952  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Schimann, H.; Epron, D.; Dreyer, E. pdf  openurl
  Title A cost-benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings: leaf life span and payback time for leaf deployment Type Journal Article
  Year 2011 Publication Journal of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 62 Issue 11 Pages 3941-3955  
  Keywords Carbon balance; construction cost; functional diversity; leaf life span; payback time; photosynthesis; tropical rainforest  
  Abstract The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to > 26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity.  
  Address (up) [Coste, S; Epron, D; Dreyer, E] INRA, UMR1137, Ctr INRA Nancy, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292838700021 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 331  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Garraud, L.; Heuret, P.; Nicolini, E.; Dreyer, E. openurl 
  Title Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae) Type Journal Article
  Year 2009 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 66 Issue 7 Pages 701-709  
  Keywords plant architecture; phenotypic plasticity; photosynthetic capacity; leaf structure; tropical rain forest  
  Abstract Irradiance elicits a large plasticity in leaf traits, but little is known about the modulation of this plasticity by ontogeny. Interactive effects of relative irradiance and ontogeny were assessed on leaf traits for two tropical rainforest tree species: Dicorynia guianensis Amshoff and Tachigali melinonii (Harms) Barneby (Fabaceae, Caesalpinioideae). Eleven morphological and physiological leaf traits, relative to photosynthetic performance, were measured on saplings at three different architectural development stages (ASD 1, 2 and 3) and used to derive composite traits like photosynthetic N-use efficiency. Measurements were made along a natural irradiance gradient. The effect of ASD was very visible and differed between the two species. For Dicorynia guianensis, only leaf mass-per-area (LMA) significantly increased with ASDs whereas for Tachigali melinonii, almost all traits were affected by ASD: LMA, leaf N content and photosynthetic capacity increased from ASD 1 to ASD 3. Photosynthetic N-use-efficiency was not affected by ASD in any species. Leaf traits were severely modulated by irradiance, whereas the degree of plasticity was very similar among ASDs. Only few interactions were detected between irradiance and ASD, for leaf thickness, carbon content, and the ratio Chl/N in T. melinonii and for photosynthetic capacity in D. guianensis. We conclude that ontogenic development and irradiance-elicited plasticity modulated leaf traits, with almost no interaction, i.e., the degree of irradiance-elicited plasticity was stable across development stages and independent of ontogeny in these two species, at least in the early stages of development assessed here.  
  Address (up) [Dreyer, Erwin] INRA, UMR Ecol & Ecophysiol Forestieres 1137, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000270906600009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 100  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Sonnier, G.; Dreyer, E. openurl 
  Title Similar irradiance-elicited plasticity of leaf traits in saplings of 12 tropical rainforest tree species with highly different leaf mass to area ratio Type Journal Article
  Year 2010 Publication Functional Plant Biology Abbreviated Journal Funct. Plant Biol.  
  Volume 37 Issue 4 Pages 342-355  
  Keywords functional diversity; light availability; photosynthetic nitrogen use efficiency; photosynthetic capacity; tropical rainforest  
  Abstract Leaf traits of tropical tree species display an important inter-specific diversity, as detected for instance in the large range of values of leaf mass : area ratio (LMA). They also demonstrate a large irradiance-elicited plasticity, but there is still debate whether this plasticity differs among species. To address this question, leaf traits were recorded on saplings from 12 rainforest tree species in French Guiana, grown under approximately 5, 10 and 20% relative irradiance. Fifteen structural and physiological leaf traits related to photosynthesis were measured. The irradiance-elicited plasticity was quantified using a relative distance plasticity index. A large inter-specific diversity was detected for all leaf traits. A principal component analysis opposed species with a large mass-based photosynthesis, respiration, N content and photosynthetic nitrogen use efficiency, to species with a large leaf mass : area ratio, LMA. The two pioneer species used in this study displayed the largest photosynthetic capacity (and lowest LMA) and ranked at one end of the species continuum. Relative irradiance affected almost all traits with the exception of mass-based photosynthesis. A weak interaction was found between species and relative irradiance and the species ranking was maintained among relative irradiance treatments for the majority of the traits. A principal component analysis of the values of relative-distance plasticity index failed to reveal any consistent patterns of traits or species. We concluded that irradiance-elicited plasticity of leaf traits was similar among species irrespective of LMA and successional status, despite the occurrence of a large inter-specific diversity for the investigated traits.  
  Address (up) [Dreyer, Erwin] Nancy Univ, INRA, UMR Ecol & Ecophysiol Forestieres 1137, IFR Ecosyst Forestiers Agroressources Biomol & Al, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher CSIRO PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1445-4408 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275979100009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 63  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: