toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Coste, S.; Roggy, J.C.; Schimann, H.; Epron, D.; Dreyer, E. pdf  openurl
  Title A cost-benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings: leaf life span and payback time for leaf deployment Type Journal Article
  Year 2011 Publication Journal of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 62 Issue 11 Pages 3941-3955  
  Keywords Carbon balance; construction cost; functional diversity; leaf life span; payback time; photosynthesis; tropical rainforest  
  Abstract The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to > 26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity.  
  Address [Coste, S; Epron, D; Dreyer, E] INRA, UMR1137, Ctr INRA Nancy, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0022-0957 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292838700021 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 331  
Permanent link to this record
 

 
Author Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. doi  openurl
  Title Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 228 Issue 2 Pages 512-524  
  Keywords drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem  
  Abstract Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust  
  Address Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 952  
Permanent link to this record
 

 
Author Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P. doi  openurl
  Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 229 Issue 3 Pages 1453-1466  
  Keywords bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy  
  Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation  
  Address UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 997  
Permanent link to this record
 

 
Author Svensk, M.; Coste, S.; Gérard, B.; Gril, E.; Julien, F.; Maillard, P.; Stahl, C.; Leroy, C. doi  openurl
  Title Drought effects on resource partition and conservation among leaf ontogenetic stages in epiphytic tank bromeliads Type Journal Article
  Year 2020 Publication Physiologia Plantarum Abbreviated Journal Physiol. Plant.  
  Volume 170 Issue 4 Pages 488-507  
  Keywords chlorophyll; nitrogen; water; Bromeliaceae; drought; metabolism; photosynthesis; plant leaf; Bromeliaceae; Chlorophyll; Droughts; Nitrogen; Photosynthesis; Plant Leaves; Water  
  Abstract Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage. © 2020 Scandinavian Plant Physiology Society  
  Address Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, 31062, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 00319317 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes PDF trop gros voir la documentaliste – merci Approved no  
  Call Number EcoFoG @ webmaster @ Serial 943  
Permanent link to this record
 

 
Author Leroy, C.; Gril, E.; Si Ouali, L.; Coste, S.; Gérard, B.; Maillard, P.; Mercier, H.; Stahl, C. url  doi
openurl 
  Title Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads Type Journal Article
  Year 2019 Publication Environmental and Experimental Botany Abbreviated Journal Environ. Exp. Bot.  
  Volume 163 Issue Pages 112-123  
  Keywords 15 N labelling; Carbon metabolism; Nutrient uptake; Plant performance; Tank bromeliad; Water status; Aechmea  
  Abstract The water and nutrient uptake mechanisms used by vascular epiphytes have been the subject of a few studies. While leaf absorbing trichomes (LATs) are the main organ involved in resource uptake by bromeliads, little attention has been paid to the absorbing role of epiphytic bromeliad roots. This study investigates the water and nutrient uptake capacity of LATs vs. roots in two epiphytic tank bromeliads Aechmea aquilega and Lutheria splendens. The tank and/or the roots of bromeliads were watered, or not watered at all, in different treatments. We show that LATs and roots have different functions in resource uptake in the two species, which we mainly attributed to dissimilarities in carbon acquisition and growth traits (e.g., photosynthesis, relative growth rate, non-structural carbohydrates, malate), to water relation traits (e.g., water and osmotic potentials, relative water content, hydrenchyma thickness) and nutrient uptake (e.g., 15 N-labelling). While the roots of A. aquilega did contribute to water and nutrient uptake, the roots of L. splendens were less important than the role played by the LATs in resource uptake. We also provide evidenced for a synergistic effect of combined watering of tank and root in the Bromelioideae species. These results call for a more complex interpretation of LATs vs. roots in resource uptake in bromeliads. © 2019 Elsevier B.V.  
  Address INRA, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 00988472 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 871  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: