|
Records |
Links |
|
Author |
Coste, S.; Baraloto, C.; Leroy, C.; Marcon, E.; Renaud, A.; Richardson, A.D.; Roggy, J.C.; Schimann, H.; Uddling, J.; Herault, B. |
|
|
Title |
Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Annals of Forest Science |
Abbreviated Journal |
Ann. For. Sci. |
|
|
Volume |
67 |
Issue  |
6 |
Pages |
607 |
|
|
Keywords |
chlorophyll estimate; model calibration; homographic functions; neotropical trees |
|
|
Abstract |
Chlorophyll meters such as the SPAD-502 offer a simple, inexpensive and rapid method to estimate foliar chlorophyll content. However, values provided by SPAD-502 are unitless and require empirical calibrations between SPAD units and extracted chlorophyll values. Leaves of 13 tree species from the tropical rain forest in French Guiana were sampled to select the most appropriate calibration model among the often-used linear, polynomial and exponential models, in addition to a novel homographic model that has a natural asymptote. The homographic model best accurately predicted total chlorophyll content (mu g cm(-2)) from SPAD units (R-2 = 0.89). Interspecific differences in the homographic model parameters explain less than 7% of the variation in chlorophyll content in our data set. The utility of the general homographic model for a variety of research and management applications clearly outweighs the slight loss of model accuracy due to the abandon of the species' effect. |
|
|
Address |
[Herault, Bruno] Univ Antilles Guyane, Unite Mixte Rech Ecol Forets Guyane, Kourou, France, Email: bruno.herault@ecofog.gf |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
EDP SCIENCES S A |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1286-4560 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000282350300007 |
Approved |
no |
|
|
Call Number |
EcoFoG @ eric.marcon @ |
Serial |
40 |
|
Permanent link to this record |
|
|
|
|
Author |
Biwolé, A.B.; Dainou, K.; Fayolle, A.; Hardy, O.J.; Brostaux, Y.; Coste, S.; Delion, S.; Betti, J.L.; Doucet, J.-L. |

|
|
Title |
Light Response of Seedlings of a Central African Timber Tree Species, Lophira alata (Ochnaceae), and the Definition of Light Requirements |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Biotropica |
Abbreviated Journal |
Biotropica |
|
|
Volume |
47 |
Issue  |
6 |
Pages |
681-688 |
|
|
Keywords |
biomass allocation; Central Africa; light requirement: Lophira alata; population; relative growth rate; seedling growth; timber species; Afrique centrale; allocation de biomasse; besoins en lumière; croissance des semis; bois d'œuvre; Lophira alata; population; taux de croissance relatif |
|
|
Abstract |
Light is of primary importance in structuring tropical tree communities. Light exposure at seedling and adult stages has been used to characterize the ecological profile of tropical trees, with many implications in forest management and restoration ecology. Most shade-tolerance classification systems have been proposed based on empirical observations in a specific area and thus result in contradictions among categories assigned to a given species. In this study, we aimed to quantify the light requirements for seedling growth of a Central African timber tree, Lophira alata (Ochnaceae), taking into account effects of population origin. In two controlled experiments: a light response experiment and a comparative population experiment, conducted in southwestern Cameroon, using seeds collected from four populations (three from Cameroon and one from Gabon), we examined the quantitative responses to irradiance of seedlings. After 2 years, mortality was very low (<3%), even in extremely low irradiance. Growth and biomass allocation patterns varied in response to light, with intermediate irradiance (24–43%) providing optimal conditions. Light response differed between populations. The Boumba population in the northeastern edge of the species' distribution exhibited the highest light requirements, suggesting a local adaptation. As a result of positive growth at low irradiance and maximum growth at intermediate irradiance, we concluded that L. alata exhibits characteristics of both non-pioneer and pioneer species. Implications of our results to propose an objective way to assign the light requirement for tropical tree species are discussed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1744-7429 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
648 |
|
Permanent link to this record |
|
|
|
|
Author |
Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A. |

|
|
Title |
Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Biotropica |
Abbreviated Journal |
Biotropica |
|
|
Volume |
52 |
Issue  |
6 |
Pages |
1183-1193 |
|
|
Keywords |
canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana |
|
|
Abstract |
Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation |
|
|
Address |
UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Blackwell Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
00063606 (Issn) |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
948 |
|
Permanent link to this record |
|
|
|
|
Author |
Coste, S.; Roggy, J.C.; Garraud, L.; Heuret, P.; Nicolini, E.; Dreyer, E. |
|
|
Title |
Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae) |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Annals of Forest Science |
Abbreviated Journal |
Ann. For. Sci. |
|
|
Volume |
66 |
Issue  |
7 |
Pages |
701-709 |
|
|
Keywords |
plant architecture; phenotypic plasticity; photosynthetic capacity; leaf structure; tropical rain forest |
|
|
Abstract |
Irradiance elicits a large plasticity in leaf traits, but little is known about the modulation of this plasticity by ontogeny. Interactive effects of relative irradiance and ontogeny were assessed on leaf traits for two tropical rainforest tree species: Dicorynia guianensis Amshoff and Tachigali melinonii (Harms) Barneby (Fabaceae, Caesalpinioideae). Eleven morphological and physiological leaf traits, relative to photosynthetic performance, were measured on saplings at three different architectural development stages (ASD 1, 2 and 3) and used to derive composite traits like photosynthetic N-use efficiency. Measurements were made along a natural irradiance gradient. The effect of ASD was very visible and differed between the two species. For Dicorynia guianensis, only leaf mass-per-area (LMA) significantly increased with ASDs whereas for Tachigali melinonii, almost all traits were affected by ASD: LMA, leaf N content and photosynthetic capacity increased from ASD 1 to ASD 3. Photosynthetic N-use-efficiency was not affected by ASD in any species. Leaf traits were severely modulated by irradiance, whereas the degree of plasticity was very similar among ASDs. Only few interactions were detected between irradiance and ASD, for leaf thickness, carbon content, and the ratio Chl/N in T. melinonii and for photosynthetic capacity in D. guianensis. We conclude that ontogenic development and irradiance-elicited plasticity modulated leaf traits, with almost no interaction, i.e., the degree of irradiance-elicited plasticity was stable across development stages and independent of ontogeny in these two species, at least in the early stages of development assessed here. |
|
|
Address |
[Dreyer, Erwin] INRA, UMR Ecol & Ecophysiol Forestieres 1137, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
EDP SCIENCES S A |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1286-4560 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000270906600009 |
Approved |
no |
|
|
Call Number |
EcoFoG @ eric.marcon @ |
Serial |
100 |
|
Permanent link to this record |
|
|
|
|
Author |
Coste, S.; Roggy, J.C.; Imbert, P.; Born, C.; Bonal, D.; Dreyer, E. |
|
|
Title |
Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Tree Physiology |
Abbreviated Journal |
Tree Physiol. |
|
|
Volume |
25 |
Issue  |
9 |
Pages |
1127-1137 |
|
|
Keywords |
functional diversity; leaf carbon; leaf nitrogen; nitrogen-use efficiency; photosynthetic capacity; tropical rain forest |
|
|
Abstract |
Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species. |
|
|
Address |
CNRS Ecol Forets Guyane, INRA, ENGREF,CIRAD, Unite Mixte Rech, Kourou 97387, French Guiana, Email: roggy.j@cirad.fr |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
HERON PUBLISHING |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0829-318X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000231555200005 |
Approved |
no |
|
|
Call Number |
EcoFoG @ eric.marcon @ |
Serial |
230 |
|
Permanent link to this record |