|
Records |
Links |
|
Author |
Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. |

|
|
Title |
Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees |
Type |
Journal Article |
|
Year |
2020 |
Publication |
New Phytologist |
Abbreviated Journal |
New Phytol. |
|
|
Volume |
228 |
Issue |
2 |
Pages |
512-524 |
|
|
Keywords |
drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem |
|
|
Abstract |
Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust |
|
|
Address |
Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Blackwell Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0028646x (Issn) |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
952 |
|
Permanent link to this record |
|
|
|
|
Author |
Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A. |

|
|
Title |
Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Biotropica |
Abbreviated Journal |
Biotropica |
|
|
Volume |
52 |
Issue |
4 |
Pages |
608-615 |
|
|
Keywords |
branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae |
|
|
Abstract |
Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation |
|
|
Address |
UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Blackwell Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
00063606 (Issn) |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
960 |
|
Permanent link to this record |
|
|
|
|
Author |
Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina |

|
|
Title |
Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Annals of Forest Science |
Abbreviated Journal |
|
|
|
Volume |
78 |
Issue |
4 |
Pages |
78-87 |
|
|
Keywords |
Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem |
|
|
Abstract |
Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
1034 |
|
Permanent link to this record |
|
|
|
|
Author |
Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P. |

|
|
Title |
Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees |
Type |
Journal Article |
|
Year |
2021 |
Publication |
New Phytologist |
Abbreviated Journal |
New Phytol. |
|
|
Volume |
229 |
Issue |
3 |
Pages |
1453-1466 |
|
|
Keywords |
bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy |
|
|
Abstract |
Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation |
|
|
Address |
UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Blackwell Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0028646x (Issn) |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
997 |
|
Permanent link to this record |
|
|
|
|
Author |
Levionnois, Sébastien ; Salmon, Camille ; Alméras, Tancrède ; Clair, Bruno ; Ziegler, Camille ; Coste, Sabrina ; Stahl, Clement ; Gonzalez-Melo, Andrés ; Heinz, Christine ; Heuret, Patrick |

|
|
Title |
Anatomies, vascular architectures, and mechanics underlying the leaf size-stem size spectrum in 42 Neotropical tree species |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Journal of Experimental Botany |
Abbreviated Journal |
|
|
|
Volume |
72 |
Issue |
22 |
Pages |
7957–7969 |
|
|
Keywords |
|
|
|
Abstract |
The leaf size-stem size spectrum is one of the main dimensions of plant ecological strategies. Yet the anatomical, mechanical, and hydraulic implications of small vs. large shoots are still poorly understood. We investigated 42 tropical rainforest tree species in French Guiana, with a wide range of leaf areas at the shoot level. We quantified the scaling of hydraulic and mechanical constraints with shoot size estimated as the water potential difference ΔΨ and the bending angle ΔΦ, respectively. We investigated how anatomical tissue area, flexural stiffness and xylem vascular architecture affect such scaling by deviating (or not) from theoretical isometry with shoot size variation. Vessel diameter and conductive path length were found to be allometrically related to shoot size, thereby explaining the independence between ΔΨ and shoot size. Leaf mass per area, stem length, and the modulus of elasticity were allometrically related with shoot size, explaining the independence between ΔΦ and shoot size. Our study also shows that the maintenance of both water supply and mechanical stability across the shoot size range are not in conflict. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Oxford University Press |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
1050 |
|
Permanent link to this record |