|
Records |
Links |
|
Author |
Coste, S.; Baraloto, C.; Leroy, C.; Marcon, E.; Renaud, A.; Richardson, A.D.; Roggy, J.C.; Schimann, H.; Uddling, J.; Herault, B. |
|
|
Title |
Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana |
Type |
Journal Article |
|
Year |
2010 |
Publication  |
Annals of Forest Science |
Abbreviated Journal |
Ann. For. Sci. |
|
|
Volume |
67 |
Issue |
6 |
Pages |
607 |
|
|
Keywords |
chlorophyll estimate; model calibration; homographic functions; neotropical trees |
|
|
Abstract |
Chlorophyll meters such as the SPAD-502 offer a simple, inexpensive and rapid method to estimate foliar chlorophyll content. However, values provided by SPAD-502 are unitless and require empirical calibrations between SPAD units and extracted chlorophyll values. Leaves of 13 tree species from the tropical rain forest in French Guiana were sampled to select the most appropriate calibration model among the often-used linear, polynomial and exponential models, in addition to a novel homographic model that has a natural asymptote. The homographic model best accurately predicted total chlorophyll content (mu g cm(-2)) from SPAD units (R-2 = 0.89). Interspecific differences in the homographic model parameters explain less than 7% of the variation in chlorophyll content in our data set. The utility of the general homographic model for a variety of research and management applications clearly outweighs the slight loss of model accuracy due to the abandon of the species' effect. |
|
|
Address |
[Herault, Bruno] Univ Antilles Guyane, Unite Mixte Rech Ecol Forets Guyane, Kourou, France, Email: bruno.herault@ecofog.gf |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
EDP SCIENCES S A |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1286-4560 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000282350300007 |
Approved |
no |
|
|
Call Number |
EcoFoG @ eric.marcon @ |
Serial |
40 |
|
Permanent link to this record |
|
|
|
|
Author |
Coste, S.; Roggy, J.C.; Garraud, L.; Heuret, P.; Nicolini, E.; Dreyer, E. |
|
|
Title |
Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae) |
Type |
Journal Article |
|
Year |
2009 |
Publication  |
Annals of Forest Science |
Abbreviated Journal |
Ann. For. Sci. |
|
|
Volume |
66 |
Issue |
7 |
Pages |
701-709 |
|
|
Keywords |
plant architecture; phenotypic plasticity; photosynthetic capacity; leaf structure; tropical rain forest |
|
|
Abstract |
Irradiance elicits a large plasticity in leaf traits, but little is known about the modulation of this plasticity by ontogeny. Interactive effects of relative irradiance and ontogeny were assessed on leaf traits for two tropical rainforest tree species: Dicorynia guianensis Amshoff and Tachigali melinonii (Harms) Barneby (Fabaceae, Caesalpinioideae). Eleven morphological and physiological leaf traits, relative to photosynthetic performance, were measured on saplings at three different architectural development stages (ASD 1, 2 and 3) and used to derive composite traits like photosynthetic N-use efficiency. Measurements were made along a natural irradiance gradient. The effect of ASD was very visible and differed between the two species. For Dicorynia guianensis, only leaf mass-per-area (LMA) significantly increased with ASDs whereas for Tachigali melinonii, almost all traits were affected by ASD: LMA, leaf N content and photosynthetic capacity increased from ASD 1 to ASD 3. Photosynthetic N-use-efficiency was not affected by ASD in any species. Leaf traits were severely modulated by irradiance, whereas the degree of plasticity was very similar among ASDs. Only few interactions were detected between irradiance and ASD, for leaf thickness, carbon content, and the ratio Chl/N in T. melinonii and for photosynthetic capacity in D. guianensis. We conclude that ontogenic development and irradiance-elicited plasticity modulated leaf traits, with almost no interaction, i.e., the degree of irradiance-elicited plasticity was stable across development stages and independent of ontogeny in these two species, at least in the early stages of development assessed here. |
|
|
Address |
[Dreyer, Erwin] INRA, UMR Ecol & Ecophysiol Forestieres 1137, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
EDP SCIENCES S A |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1286-4560 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000270906600009 |
Approved |
no |
|
|
Call Number |
EcoFoG @ eric.marcon @ |
Serial |
100 |
|
Permanent link to this record |
|
|
|
|
Author |
Bonal, D.; Born, C.; Brechet, C.; Coste, S.; Marcon, E.; Roggy, J.C.; Guehl, J.M. |
|
|
Title |
The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits |
Type |
Journal Article |
|
Year |
2007 |
Publication  |
Annals of Forest Science |
Abbreviated Journal |
Ann. For. Sci. |
|
|
Volume |
64 |
Issue |
2 |
Pages |
169-176 |
|
|
Keywords |
C-13; functional diversity; leaf gas exchange; species grouping; tropical rainforest |
|
|
Abstract |
We characterised the among species variability in leaf gas exchange and morphological traits under controlled conditions of seedlings of 22 tropical rainforest canopy species to understand the origin of the variability in leaf carbon isotope discrimination (Delta) among species with different growth and dynamic characteristics (successional gradient). Our results first suggest that these species pursue a consistent strategy in terms of. throughout their ontogeny (juveniles grown here versus canopy adult trees from the natural forest). Second, leaf Delta was negatively correlated with WUE and N, and positively correlated with g(s), but among species differences in Delta were mainly explained by differences in WUE. Finally, species belonging to different successional groups display distinct leaf functional and morphological traits. We confirmed that fast growing early successional species maximise carbon assimilation with high stomatal conductance. In contrast, fast and slow growing late successional species are both characterised by low carbon assimilation values, but by distinct stomatal conductance and leaf morphological features. Along the successional gradient, these differences result in much lower Delta for the intermediate species (i.e. fast growing late successional) as compared to the two other groups. |
|
|
Address |
INRA Kourou, UMR Ecol Forets Guyane, F-97387 Kourou, Guyane, France, Email: damien.bonal@kourou.cirad.fr |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
EDP SCIENCES S A |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1286-4560 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISI:000244438100006 |
Approved |
no |
|
|
Call Number |
EcoFoG @ eric.marcon @ |
Serial |
169 |
|
Permanent link to this record |
|
|
|
|
Author |
Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Levionnois, S.; Cazal, J.; Cochard, H.; Esquivel-Muelbert, A.; Goret, J.-Y.; Heuret, P.; Jaouen, G.; Santiago, L.S.; Bonal, D. |

|
|
Title |
Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought |
Type |
Journal Article |
|
Year |
2019 |
Publication  |
Annals of Forest Science |
Abbreviated Journal |
Ann. Forest Sci. |
|
|
Volume |
76 |
Issue |
4 |
Pages |
115 |
|
|
Keywords |
Amazon rainforest; Embolism resistance; Hydraulic safety margins; Turgor loss point; Water potential |
|
|
Abstract |
Key message: Abundant Neotropical canopy-tree species are more resistant to drought-induced branch embolism than what is currently admitted. Large hydraulic safety margins protect them from hydraulic failure under actual drought conditions. Context: Xylem vulnerability to embolism, which is associated to survival under extreme drought conditions, is being increasingly studied in the tropics, but data on the risk of hydraulic failure for lowland Neotropical rainforest canopy-tree species, thought to be highly vulnerable, are lacking. Aims: The purpose of this study was to gain more knowledge on species drought-resistance characteristics in branches and leaves and the risk of hydraulic failure of abundant rainforest canopy-tree species during the dry season. Methods: We first assessed the range of branch xylem vulnerability to embolism using the flow-centrifuge technique on 1-m-long sun-exposed branches and evaluated hydraulic safety margins with leaf turgor loss point and midday water potential during normal- and severe-intensity dry seasons for a large set of Amazonian rainforest canopy-tree species. Results: Tree species exhibited a broad range of embolism resistance, with the pressure threshold inducing 50% loss of branch hydraulic conductivity varying from − 1.86 to − 7.63 MPa. Conversely, we found low variability in leaf turgor loss point and dry season midday leaf water potential, and mostly large, positive hydraulic safety margins. Conclusions: Rainforest canopy-tree species growing under elevated mean annual precipitation can have high resistance to embolism and are more resistant than what was previously thought. Thanks to early leaf turgor loss and high embolism resistance, most species have a low risk of hydraulic failure and are well able to withstand normal and even severe dry seasons. © 2019, The Author(s). |
|
|
Address |
Smithsonian Tropical Research Institute, Balboa, Ancon, Panama |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
12864560 (Issn) |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
901 |
|
Permanent link to this record |
|
|
|
|
Author |
Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina |

|
|
Title |
Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species |
Type |
Journal Article |
|
Year |
2021 |
Publication  |
Annals of Forest Science |
Abbreviated Journal |
|
|
|
Volume |
78 |
Issue |
4 |
Pages |
78-87 |
|
|
Keywords |
Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem |
|
|
Abstract |
Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
EcoFoG @ webmaster @ |
Serial |
1034 |
|
Permanent link to this record |