toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Urbina, Ifigenia ; Grau, Oriol ; Sardans, Jordi ; Margalef, Olga ; Peguero, Guillermo ; Asensio, Dolores ; Llusia, Joan ; Ogaya, Roma ; Gargallo-Garriga, Albert ; Van Langenhove, Leandro ; Verryckt, Lore T. ; Courtois, Elodie A. ; Stahl, Clement ; Soong, Jennifer L. ; Chave, Jérome ; Hérault, Bruno ; Janssens, Ivan A. ; Sayer, Emma ; Penuelas, Josep doi  openurl
  Title High foliar K and P resorption efficiencies in old-growth tropical forests growing on nutrient-poor soils Type Journal Article
  Year 2021 Publication Ecology and Evolution Abbreviated Journal  
  Volume 11 Issue 13 Pages 8969-8982  
  Abstract Resorption is the active withdrawal of nutrients before leaf abscission. This mechanism represents an important strategy to maintain efficient nutrient cycling; however, resorption is poorly characterized in old-growth tropical forests growing in nutrient-poor soils. We investigated nutrient resorption from leaves in 39 tree species in two tropical forests on the Guiana Shield, French Guiana, to investigate whether resorption efficiencies varied with soil nutrient, seasonality, and species traits. The stocks of P in leaves, litter, and soil were low at both sites, indicating potential P limitation of the forests. Accordingly, mean resorption efficiencies were higher for P (35.9%) and potassium (K; 44.6%) than for nitrogen (N; 10.3%). K resorption was higher in the wet (70.2%) than in the dry (41.7%) season. P resorption increased slightly with decreasing total soil P; and N and P resorptions were positively related to their foliar concentrations. We conclude that nutrient resorption is a key plant nutrition strategy in these old-growth tropical forests, that trees with high foliar nutrient concentration reabsorb more nutrient, and that nutrients resorption in leaves, except P, are quite decoupled from nutrients in the soil. Seasonality and biochemical limitation played a role in the resorption of nutrients in leaves, but species-specific requirements obscured general tendencies at stand and ecosystem level.  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1011  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: