Bertani, S., Houel, E., Bourdy, G., Stien, D., Jullian, V., Landau, I., et al. (2007). Quassia amara L. (Simaroubaceae) leaf tea: Effect of the growing stage and desiccation status on the antimalarial activity of a traditional preparation. J. Ethnopharmacol., 111(1), 40–42.
Abstract: In French Guiana, Quassia amara L. (Simaroubaceae) leaf tea is a well-known widely used traditional antimalarial remedy. Impact of the vegetal sampling condition on in vivo and in vitro antimalarial activity was assessed. Traditional infusions were prepared with juvenile or mature leaves, both either fresh or dried. Results showed that growing stage and freshness of vegetal material exert a striking effect on antimalarial activity, both in vitro and in vivo. By far, leaf tea made from fresh juvenile (FJ) Quassia amara leaves was the most active. In vitro, active component (simalikalactone D) concentration correlates biological activities, although unexplained subtle variations were observed. In vivo, tea made with dried juvenile (DJ) leaves displays a peculiar behavior, meaning that some components may help simalikalactone D delivery or may be active in vivo only, therefore enhancing the expected curative effect of the traditional preparation. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Keywords: antimalarial; Quassia amara; quassinoids; simalikalactone D; traditional medicine
|
Bertani, S., Houel, E., Jullian, V., Bourdy, G., Valentin, A., Stien, D., et al. (2012). New findings on Simalikalactone D, an antimalarial compound from Quassia amara L. (Simaroubaceae). Exp. Parasitol., 130(4), 341–347.
Abstract: Quassia amara L. (Simaroubaceae) is a species widely used as tonic and is claimed to be an efficient antimalarial all over the Northern part of the Amazon basin. Quassinoid compound Simalikalactone D (SkD) has been shown to be one of the molecules responsible for the antiplasmodial activity of a watery preparation made out of juvenile fresh leaves of this plant. Because of its strong antimalarial activity, we decided to have a further insight of SkD pharmacological properties, alone or in association with classical antimalarials. At concentrations of up to 200 μM, we showed herein that SkD did not exert any apoptotic or necrotic activities in vitro on lymphoblastic cells. However, an antiproliferative effect was evident at concentrations higher than 45. nM. SkD was inefficient at inhibiting heme biomineralization and the new permeability pathways induced by the parasite in the host erythrocyte membrane. With respect to Plasmodium falciparum erythrocytic stages, SkD was almost inactive on earlier and later parasite stages, but potently active at the 30th h of parasite cycle when DNA replicates in mature trophozoites. In vitro combination studies with conventional antimalarial drugs showed that SkD synergizes with atovaquone (ATO). The activity of ATO on the Plasmodium mitochondrial membrane potential was enhanced by SkD, which on its own had a poor effect on this cellular parameter. © 2012 Elsevier Inc.
Keywords: Antimalarial; Plasmodium; Quassia amara; Quassinoid; Simalikalactone d
|
Bertani, S., Houel, E., Stien, D., Chevolot, L., Jullian, V., Garavito, G., et al. (2006). Simalikalactone D is responsible for the antimalarial properties of an amazonian traditional remedy made with Quassia amara L. (Simaroubaceae). J. Ethnopharmacol., 108(1), 155–157.
Abstract: French Guiana (North-East Amazonia) records high malaria incidence rates. The traditional antimalarial remedy most widespread there is a simple tea made out from Quassia amara L. leaves (Simaroubaceae). This herbal tea displays an excellent antimalarial activity both in vitro and in vivo. A known quassinoid, simalikalactone D (SkD), was identified as the active compound, with an IC50 value of 10 nM against FeB1 Plasmodium falciparum chloroquine resistant strain in vitro. Lastly, it inhibits 50% of Plasmodium yoelii yoelii rodent malaria parasite at 3.7 mg/kg/day in vivo by oral route. These findings confirm the traditional use of this herbal tea. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Keywords: antimalarial; Quassia amara; quassinoids; simalikalactone D; traditional medicine
|
Boulogne, I., Constantino, R., Amusant, N., Falkowski, M., Rodrigues, A. M. S., & Houel, E. (2017). Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs. Journal of Pest Science, 90(1), 19–37.
Abstract: The genus Nasutitermes is among the most abundant wood-feeding Termitidae and an extremely diverse and heterogeneous group in terms of its biogeography and morphology. Despite the major role of several Nasutitermes species as structural pests, the phylogenetic status of this genus is still unclear, along with a confused taxonomy and species identification remaining difficult. The first aim of this review was thus to gather and discuss studies concerning the taxonomic status of the genus Nasutitermes in order to clarify this crucial point. Then, our goal was to gain new insights into the management of N. corniger, considered to be the most economically detrimental pest of this genus in South America and a Nasutitermes model species, while filtering available information concerning its biology through the prism of termite control, as well as critically examine the existing methods. We indeed strongly believe that increasing our knowledge of this species’ biological strategies is the key to progress in the challenging question of their sustainable management. © 2016, Springer-Verlag Berlin Heidelberg.
Keywords: Antimicrobial and insecticidal botanical extracts; Ipm; Nasutitermes corniger; Sustainable management; Taxonomic history; Termitidae
|
Cachet, N., Ho-A-Kwie, F., Rivaud, M., Houel, E., Deharo, E., Bourdy, G., et al. (2012). Picrasin K, a new quassinoid from Quassia amara L. (Simaroubaceae). Phytochem. Lett., 5(1), 162–164.
Abstract: A new quassinoid Picrasin K 1 was isolated from a decoction made of Quassia amara leaves, traditionally used in French Guyana to treat malaria. The structure and relative stereochemistry of 1 was determined through extensive NMR analysis. Picrasin K showed a low activity against Plasmodium falciparum in vitro (IC 50 = 8 μM), and a similar low activity on human cancerous cells line (IC 50 = 7 μM on MCF-7 cells line). © 2011 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.
Keywords: Malaria; P. falciparum; Quassia amara; Quassinoids; Simaroubaceae
|